Deshka River temperature monitoring and salmon studies

Daniel Rinella

U.S. Fish and Wildlife Service Anchorage Fish and Wildlife Conservation Office daniel_rinella@fws.gov

Acknowledgments

- Branch chief: Jon Gerken, Anchorage FWCO ٠
- Sue Mauger, Cook Inletkeeper •
- **Statistical support**: Anna Marie Benson, USFWS Conservation Genetics Lab
- **Palmer ADF&G:** Nick Decovich, Daryl Lescanec, John Campbell, Oliver • Querin, Deshka weir crews
- Field/lab/data help: John Hermus, Bailey Korkoske, Mitch Paisker, Mike ٠ Johnson, Grace Kirkey, Ben Rich, Josh Ashline, Mary Kate Swenarton, Allison Dulude, Emma Craig, Soren George-Nichol, Jeremy Thatcher, Ashe Christensen, Ginny Wala, Olin Halsten, Sage Fox, Ben Talbot, Brennan Watson, Tim Ericson, Eugene Peltola, Hanna Lavin, Dylan Bruce, Mike Buntjer, Zach Crum, Maggie Hansen-Ellithorpe, Guy Eroh, Corinne Fischer, Maddie Lee, Natalia Mulawa
- **Temperature data archiving:** Meg Perdue, USFWS Water Resources •
- Funding and in-kind: •

Mat-

Why the Deshka?

- Historically productive Chinook and Coho salmon producer
 - Chinook fishery restricted/closed 8 of the 10 last years
- The water gets warm
- Road-accessible model system for understanding warm, lowland streams across Alaska
- Interagency interest
 - Mat-Su Salmon Habitat Partnership Strategic Plan – *initial funding*
 - NFHP Water to Watch, 2022
 - Climate change priority in USFWS Regional Strategic Intent
 - Alaska Freshwater Temperature Action Plan
 - Possible ESA listing for GOA
 Chinook

Warm streams are warming fastest

ARTICLE

Summer temperature regimes in southcentral Alaska streams: watershed drivers of variation and potential implications for Pacific salmon

Sue Mauger, Rebecca Shaftel, Jason C. Leppi, and Daniel J. Rinella

150°0'W

Maximum Weekly Maximum Temperature (°C)

Warm water correlates with low productivity for Deshka Chinook

PRIMARY RESEARCH ARTICLE

Global Change Biology WILEY

Watershed-scale climate influences productivity of Chinook salmon populations across southcentral Alaska

Leslie A. Jones¹ | Erik R. Schoen² | Rebecca Shaftel¹ | Curry J. Cunningham³ | Sue Mauger⁴ | Daniel J. Rinella⁵ | Adam St. Saviour⁶

Temperature monitoring and salmon studies in the Deshka River

Two core components: 1. Temperature network 2. Juvenile salmon surveys

Temperature network

Objectives

- Build a watershed-scale model to characterize current, past, and future thermal conditions across the watershed
- Provide site-specific temperature data for fish studies

Methods

- Log temperature year-round at 82 sites
 - Focused mainly on tributary junctions
 - 2017 present (n = 23 million)
- Modeled with Bayesian spatial stream network design
 - Current, hindcasting, forecasting

Juvenile salmon surveys

Objectives

- Estimate how temperature influences:
 - Growth rates
 - Distribution and relative abundance
- Forecast changes in the abundance and distribution of thermally suitable habitat
 - Spawning
 - Rearing
- Determine if juvenile salmon abundance can help forecast the size of future runs

Methods

- Sample juvenile Chinook and coho across the growing season
 - 82 sites, same as temperature network
 - 2019 2024 (n = 10,000+)
 - 10 minnow traps/site; 1-hour soak
 - Trap-scale depth, flow, cover
 - Salmon length & weight
 - Otoliths, stomachs, and body composition from subsample

Some questions:

- What is the distribution of thermally suitable habitat in a 'normal' vs warm year?
 - Rearing (<18°C)
 - Spawning and incubating (<13°C)
- Are juvenile salmon showing signs of heat stress?
- Is warm water impacting juvenile salmon growth?
- How are Chinook spawners coping with warm water?
- How many juvenile salmon are pike eating?
 Will it get worse?

Distribution of thermally-suitable rearing habitat?

Distribution of thermally-suitable spawning habitat?

Are juvenile salmon showing signs of heat stress?

- Collaboration with USGS, SSP/QRP funding
- Lab study to identify temperature thresholds
 - Chinook = 21°C
 - Coho = 23 °C

Are juvenile salmon showing signs of heat stress?

- Collaboration with USGS, SSP/QRP funding
- Data from wild Deshka salmon show similar thresholds
- Manuscript describing patterns and prevalence is forthcoming

Is warm water impacting juvenile salmon growth?

- John Hermus' UAF thesis, funded by SSP-QRP
- Collaboration with USGS, UAF
- Growth measured by otolith daily growth increments
- Effects of heat stress on growth will also be modeled

How are Chinook spawners coping with warm water?

- Opportunistic carcass surveys
- Temperature-archival radio tagging
 - Collaboration with ADF&G and USGS
 - 80% tag recovery rate
 - 2023: 40 of 49 tags
 - 2024: 38 of 49 tags
 - Mike Johnson's UAF grad program funded by SSP/QRP
 - See Mike and Bailey's poster for more info

How many juvenile salmon are pike eating? Will it get worse?

- Ben Rich's UAF thesis (submitted to Global Change Biology)
- Fewer salmon are consumed as populations decline
- Northern Pike consume 200,000 2M juvenile salmon annually
- Bioenergetics scenarios forecast 6 12% increase in consumption in future decades

Next steps

- Continue temperature network and carcass surveys indefinitely
- Complete analyses & manuscripts
 - Prevalence and patterns of heat stress in juvenile salmon
 - Projections of thermal habitat change
 - Influence of temperature on juvenile salmon growth rates
 - Influence of temperature on juvenile salmon distribution and relative abundance
- Finish graduate research projects
 - John Hermus Effects of temperature vs heat stress on growth rates
 - Mike Johnson Characterizing the thermal experience of spawners
- Develop annual indices of juvenile salmon abundance (2018 to 2023 brood years) and determine if they are useful for forecasting the size of future runs (2029)

Thank you!