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“The idea that intact mires act as useful water storage reservoirs...is clearly wrong:
drained mires are better reservoirs and mineral soil ecosystems are better still.”
-H.A.P. Ingram 1983

“..we now know that many bog peats do not typically act like ‘sponges’...Rather,
baseflows are poorly maintained...”
-J Holden et al 2004



“The idea that intact mires act as useful water storage reservoirs...is clearly wrong:
drained mires are better reservoirs and mineral soil ecosystems are better still.”
-H.A.P. Ingram 1983.

“..we now know that many bog peats do not typically act like ‘sponges’...Rather,
baseflows are poorly maintained...”
-J Holden et al 2004

“During the drought, streams draining blanket peat on Plynlimon and elsewhere
In mid-Wales sustained higher minimum flows than those draining podzol or
brown-earth soils.”

-M.D. Newson 1980

“Thus, more than half of the...runoff... during years of near and below normal
precipitation... is water slowly released from storage within lakes and wetlands.”
-E.A. Ackroyd et al. 1967



“Stream flow is most easily measured on
small watersheds containing lake-filled peatland”




“Stream flow is most easily measured on
small watersheds containing lake-filled peatland”

“...rainfall is quickly returned to the atmosphere
by evapotranspiration at the expense of
stream flow...”

-Boelter & Verry 1977



Diffuse flow from large lakebed
peatlands is more difficult
to measure

A more common and extensive
type of peatland

“Stream flow is most easily measured on
small watersheds containing lake-filled peatland”

“...rainfall is quickly returned to the atmosphere
by evapotranspiration at the expense of
stream flow...”

-Boelter & Verry 1977
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Potential Evapotranspiration (ET):
Thornthwaite method
Temperature
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Water level

How to measure?
Diurnal Method

Night-time rate of decline
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Water level

How to measure?
Diurnal Method

Day-time rate of decline

Discharge







Surplus Remaining For Stream Flow
Limpopo Creek

Actual water level decline (228mm/8d)
Area of similar peatlands in watershed

Actual dry-period flow (0.06 m3s)
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Amount Remaining For Stream Flow
(Actual dry-period flow = 0.06 m3s)

1 specificYield
“045 .14 0.10 0.05
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Amount Remaining For Stream Flow
(Actual dry-period flow = 0.06 m3s1)

[ Specific Yield

T 0.45 .14 0.10 0.05

o o o0 0
Diurnal ET  JUBLE 0.024 0.012

Possible that peatlands support flow during dry periods
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Mixing Analysis
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Fig. 3. Artificial data with pure end-members in U space defined
by the correlation matrix.

FROM:
Christophersen N, Hooper RP 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem.
Water Resources Research 28, 99-107. DOI: 10.1029/91wr02518.



We have a problem.....

A funny thing happened
on the way to the stream....






Flow averages over time
Chloride In rain averages over time
Chloride In stream water does not average

JW. Kirchner et al £ Joumal of Hyvdrology 254 (2001 ) 82101
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Fig. 4. Non-self-averaging behavior in water quality time series, illustrated
by rms differences between successive mean concentrations of selected
solutes in 7-h and weekly samples of Upper Hafren streamwater (solid and
open symbols, respectively) averaged over intervals ranging from 7 h to 5-10y.
Error bars show 5Es. Thin gray reference lines show trends for non-self-
averaging behavior, in which averages over longer and longer time scalesdo
not converge. Heavy gray lines show the slope of —0.5 predicted by the
central limit theorem for self-averaging time series. The solutes generally
plot as horizontal lines, indicating non—self-averaging behavior. In contrast,

stream discharge and its logarithmic transform both follow the self-aver- . . L . .
aging behavior indicated by the heavy gray lines, for time scales longer than From: Kirchner, J.W., and Neal, C., 2013. Universal fractal scaling in stream chemistry and its

~0.1 y. Individual solutes are shifted by arbitrary factors so they can be implications for solute transport and water quality trend detection. Proceedings of the National
plotted together. Plots for all 45 solutes and both sampling sites are shown Academy of Sciences 110, 122213-122218
in 51 Appendix, Fig. 510.



JW. Kirchner et all / Joumal of Hyvdrology 254 (2001 ) 82101
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Upslope inputs

Upslope, midslope,
and near-stream
inputs combined




JW. Kirchner et al. / Joumal of Hydrology 254 (2001 ) 82101
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Watershed acts as a “fractal filter”

JW. Kirchner et al. / Joumal of Hydrology 254 (2001 ) 82101
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Fig. 3. Artificial data with pure end-members in U space defined
by the correlation matrix.

FROM:
Christophersen N, Hooper RP 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem.
Water Resources Research 28, 99-107. DOI: 10.1029/91wr02518.
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- Stream sample collection
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1 Water samples analyzed:
|| Cations on ICP-MS at UAA-ASET lab (B. Hagedorn)

J Isotopes at ENRI Stable Isotope Lab (J. Welker & Mﬁgggq{rsli__-_‘,? .
Anions at EPA MED lab, Duluth, MN (M. Moffett, L. Anderson)
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" Observed concentration, units vary with solute



End-Member Mixing Analysis:

Tracers mix conservatively

All end-members identified
End-members sufficiently different
Mixing is hydrologically possible
End-members of fixed composition



5 tracers: SO,, K, 6120, Ni, Ba
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3 End-member model
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Second PCA Component

Peat surface
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Peat provides 55% of stream flow
= 0.5% of potential contributing volume of watershed
Till = 65%
Tertiary= 35%
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Peat provides 55% of stream flow
Fits reasonable estimates from water budget

1 specificYield
T 0.45 .14 0.10 0.05

0 0 0 0

(Actual dry-period flow = 0.06 m3s?)



1. ET estimated using a diurnal method
without recharge
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