Juvenile Salmon Use of Knik Arm Estuaries

Hannah N. Ramage

- Function of estuaries for juvenile salmon
 - Migration pathway
 - Pink salmon use estuaries as a neutral pathway (Simenstad 1982)
 - Sockeye, coho, chum and Chinook all spend some amount of time feeding in estuaries (Healy 1982, Chamberlin 2011)
 - Pink and chum migrate in the spring as fry, sockeye, Chinook and coho throughout the spring and summer usually as fingerlings or age 1+

- Function of estuaries for juvenile salmon
 - Feeding and refuge
 - Chinook and chum spend the most time feeding in estuaries and share a similar diet (Dunford 1975)
 - Chinook exhibit steady increases in growth throughout the summer season and may feed in estuaries until late fall
 - All species use estuaries as refuge from larger predators that are found at sea
 - Osmoregulation

- Function of the Cook Inlet and Knik Arm
 - Northern Cook Inlet studies (Moulton 1997)
 - Sampled from the Susitna River mouth to the Foreland, on shores and in open water
 - Found all five species throughout the sampling area with higher abundances near the Susitna River mouth
 - Pink and chum were most abundant
 - Chinook and chum were found to have a strong inverse correlation with salinity
 - Stomach contents showed a diet of mostly copepods, fish larvae and other zooplankton

- Function of the Cook Inlet and Knik Arm
 - Knik Arm Studies (Houghton et al. 2005)
 - Beach seining and open water tow netting were conducted
 - Pink salmon move through the arm quickly with one short peak abundance in late May
 - Some Chinook and coho were found to reside in the arm until late fall
 - Multiple age classes of sockeye, coho and Chinook were present
- No Studies in eastern portion of Knik arm within transition zones between streams and the estuary

Project Objectives

- Conduct a literature review of previous juvenile salmon studies within estuaries to produce an annotated bibliography
- Locate access points to tidally influenced stream mouths
- Test and develop methods for sampling within different habitat types
- Measure relative abundances of juvenile salmon (if present) in different habitat types

Sites Sampled

Sampling Reach #1

Sampling Reach #1

Sampling Reach #1

July 10th

Haul #1: 3 stickleback

Haul #2: 4 stickleback

Haul #3: 12 stickleback <u>Turbidity:</u> 115.6 NTU

<u>Specific Conductivity:</u> 411.5 μS/cm

Salinity: 0.2 ppt

Sampling Reach #2

Sampling Reach #2

Sampling Reach #2

L	luly 10 th
Haul #1:	Turbidity:
35 stickleback	11.14 NTU
Haul #2:	Specific Conductivity:
3 stickleback*	366.8 μS/cm
<u>Haul #3:</u>	<u>Salinity:</u>
47 stickleback	0.2 ppt

*Many stickleback smaller than mesh size (1/8") and fell through net

July 23rd

<u>Haul #1:</u> Coho salmon – 48mm

<u>Haul #2:</u> Ninespine stickleback Burbot – 100 mm (TL) Sockeye salmon – 44 mm Chum salmon – 43 mm

Haul #3:

Sculpin Ninespine stickleback Sockeye salmon – 56 mm

<u>Haul #4:</u> Coho salmon – 53 mm

<u>Haul #5:</u> Burbot – 78 mm (TL) Ninespine stickleback

Turbidity: 110.83 NTU

<u>Specific Conductivity:</u> 243.6 μS/cm

<u>Salinity:</u> 0.1 ppt

July 23rd

<u>Haul #1:</u> Chum salmon – 44mm Threespine stickleback

<u>Haul #2:</u> 2 Ninespine stickleback Rainbow trout – 95mm

Haul #3: No fish

Specific Conductivity: 1132 μS/cm

<u>Salinity:</u> 0.6 ppt

Haul #4: 12+ Marine crustaceans (*Crangon* spp.)

<u>Haul #5:</u> 3 Ninespine stickleback Threespine stickleback

Haul #6: Ninespine stickleback

<u>Haul #7:</u> Threespine stickleback

Narrow Transition zone:

- Mostly freshwater
- Sampled with baited minnow traps

1 1. 1920 -----

July 24th

<u>Trap 1:</u> Sculpin	
<u>Trap 2:</u>	Turbidity:
No Fish	7.74 NTU
<u>Trap 3:</u>	<u>Specific Conductivity:</u>
No Fish	333 μS/cm
<u>Trap 4:</u>	<u>Salinity:</u>
No Fish	0.2 ppt

<u>Trap 5:</u> Threespine stickleback

Wide Outlet:

- Tidally Influenced
- Sampled with beach seine and baited minnow traps

a) I la ta

July 24th

<u>Trap #1:</u> No Fish

<u>Trap #2:</u> No Fish

<u>Trap #3:</u> Coho salmon – 85mm

<u>Trap #4:</u> Coho salmon – 79mm Coho salmon – 102mm

<u>Trap #5:</u> No Fish <u>Haul #1:</u> Coho salmon – 50 mm

Haul #2: 2 Threespine stickleback 1 Ninespine stickleback

Haul #3: No fish

Haul #4: 6 Threespine stickleback

Haul #5: 2 Threespine stickleback

<u>Turbidity:</u> 131 NTU
<u>Specific Conductivity:</u> 4600 μS/cm
<u>Salinity:</u> 2.5 ppt

Difficulties

- Accessibility
 - Long, shallow channels to boat down
 - Surrounded by floating vegetation mats
- Major tidal fluctuations
 - Tidal variations reaching around 30 ft
- Mud
 - Made sampling difficult

Accessibility

Mud

Plans for next year

- Focus sampling efforts on habitat at edge of freshwater and estuarine
 - Sites may have been too extreme for rearing (large tidal fluctuations, high turbidity)
 - Juvenile salmon may move between freshwater and estuarine habitats with tides to take advantage of inflowing food sources
- Sample during spring outmigration

Acknowledgements

STRISH HABITAT PARTNERSHIP

GREAT LAND TRUST

Working with willing landowners and other partners to conserve Southcentral Alaska's lands and waterways

Acknowledgements

 Thanks to Emma Helverson and Jenn Woodham

Works Cited

- Chamberlin, J.W., A.N. Kagley, K.L. Fresh, and T.P. Quinn. 2011. Movements of Yearling Chinook Salmon during the First Summer in marine Waters of Hood Canal, Washington. Transaction of the American Fisheries Society 140(2): 429-439.
- Dunford, W.E. 1975. Space and food utilization by salmonids in marsh habitats of the Fraser River Estuary. M. Sc. Thesis, Dep. Zoology, Univ. British Columiba, Vancouver, B.C. 90 p.
- Healey, M.C. 1982. Juvenile Pacific Salmon in Estuaries: The Life Support System, p. 315-341. In V.S. Kennedy [ed.] Estuarine Comparisons. Academic Press, Inc., New York, NY.
- Houghton, J., Starkes, J., Chambers, M., and D. Ormerod. 2005. A marine Fish and Benthos Studies in the Knik Arm Anchorage, Alaska. Prepared for Knik Arm bridge and toll authority and HDR Alaska Inc. Prepared by Pentec Environmental.
- Moulton, L.L. 1997. Early marine residence, growth and feeding by juvenile salmon in Northern Cook Inlet, Alaska. Alaska Fishery Research Bulletin 4: 2, 154-177.
- Simenstad, C.A., K.L. Fresh, and E.O. Salo. 1982. The Role of Puget Sound and Washington Coastal Estuaries in the Life History of Pacific Salmon: An Unappreciated Function, p. 343-364. In V.S. Kennedy [ed.] Estuarine Comparisons. Academic Press, Inc., New York, NY.