Factors affecting Northern Pike (*Esox lucius*) leaping ability: implications for selective barrier design in invaded systems Taylor L. Cubbage¹

Jeffrey A. Falke², Kevin Kappenman³, Kristine Dunker⁴, and Matthew Blank⁵

¹College of Fisheries and Ocean Sciences, University of Alaska Fairbanks,² U.S. Geological Survey Alaska Cooperative Fish and Wildlife Research Unit, ³U.S. Fish and Wildlife Service Bozeman Fish Technology Center, ⁴Alaska Department of Fish and Game Sportfish Division, ⁵Montana State University

Alaska Cooperative Fish & Wildlife Research Unit

This research has been conducted on the ceded and unceded lands of the Lower Tanana Dene', Dena'ina, and Ahtna People of Alaska, and the Blackfeet and Crow People of Montana.

I am grateful for their past, present, and future stewardship of these habitats and aquatic resources I will share with you today.

Biological invasions – learning opportunities

Longer-legged toads hop further faster © Ben Phillips

Introduction

Methods

Results

Conclusions

Invasion example – Northern Pike

Introduction

Methods

Results

Northern Pike in Alaska

Introduction

Methods

Results

Selective fragmentation

Rahel and McLaughlin 2018. Selective fragmentation and the management of fish movement across anthropogenic barriers

Introduction

Methods

Results Conclusions

What affects leaping ability?

Introduction

Methods

Results

s Conclusions

Location - BFTC

USFWS Bozeman Fish Technology Center

Introduction

Methods

Results

Conclusions

Pike collection

Introduction

Methods

Results

Conclusions

Pike husbandry

Introduction

Methods

Results

s Conclusions

Flume configuration

Introduction

Methods

Results

Conclusions

Experimental design – height and depth

Height	10	10	15	15	15	20	20	30	30	30	30	35	40	40	40	65
Depth	30	40	50	65	80	20	30	40	50	65	80	30	40	65	80	40

Results

Introduction

Methods

N = 6 per	0
treatment	

Variable type	Variable of interest
Response	Passage success
Explanatory	Height, Depth
Constant	Temperature, flow rate
Covariate	Pike size, age, growth rate, body condition, metabolism

Acknowledgements

Conclusions

Experimental design – height, depth, and flow

Introduction

Methods

Results

Conclusions

Experimental procedure

Introduction

Methods

Results

Conclusions

Results – pike metrics

• 55 F	oike
--------	------

- 44 males
- 11 females
- 98% mature

Metric	Minimum	Maximum
Fork length (mm)	520	840
Metabolic capacity (µmol/g/min)	300	600
% Dry lipid	11	20.5
Age (years)	2	10
Growth rate (mm/day)	0.06	0.96

Introduction

Methods

Results

Conclusions

Results – height and depth

10 X 30 84%

40 x 65 17%

65 x 40 0%

Introduction

Methods

Results Conclusions

Results – height, depth, and flow

10 x 30 x 27 L/s 84%

Introduction

Methods

Results

Conclusions

Results – model selection

Passage success ~ Barrier height Pool depth² Fork length * pool depth Growth rate

<u>No Effect</u> Body condition Metabolism Age Flow rate

Introduction

Methods

Results

Conclusions

Results – Barrier height

Introduction

Results

Conclusions

Results – pool depth

Introduction

Objectives

Chapter 1

Chapter 2

Results – Pool depth and FL interaction

Introduction

Methods

Results (

Results - growth rate

2 x faster growth 4% increase in leap success

Introduction

Methods

Results

Conclusions

- Captured range of pike leaping ability (0%-84%)
- 40 cm x 40 cm impassable
- Physical > Biological factors
- Effects of water temperature, higher flows, seasonal motivation
- In-situ testing

40 cm < 70+ cm

Methods

Results

Conclusions

<u>Graduate Committee</u> Jeff Falke Kristine Dunker Kevin Kappenman Peter Westley

ADFG

Matt Albert Parker Bradley Cody Jacobson Gregg Sumstad Phil Stacey

UAF

Kristin O'Brien Deanna Strohm Elizabeth Hinkle Lauren Yancy Erick Dela Rosa Stephen Klobucar

USFWS

Aaron Martin Jason Ilgen Matt Toner Cal Fraser Gibson Gaylord

Acknowledgements

Funding, in-kind, and academic support

Alaska Cooperative Fish & Wildlife Research Unit

U.S.

FISH & WILDLIFE SERVICE

<u>MSU</u> Matt Blank Lucio Stagnitti Megan Conley Cole Buller

Contact me: tlcubbage@alaska.edu

Introduction

Methods

Results

Conclusions