

Prioritizing threat management to save Mat-Su salmon

Dr Tara Martin - University of British Columbia, International Union for the Conservation of Nature (IUCN), 2017 Wilburforce Fellow

www.taramartin.org

Tara.Martin@ubc.ca

Priority threat management

LETTER CONSERVATION LETTERS 2012 5:196-204

Prioritizing threat management for biodiversity conservation

Josie Carwardine^{1,6}, Trudy O'Connor^{2,5}, Sarah Legge^{3,4}, Brendan Mackey^{5,7}, Hugh P. Possingham⁶, & Tara G. Martin¹

Global Change Biology

Global Change Biology (2015) 21, 3917-3930, doi: 10.1111/gcb.13034

Priority threat management of invasive animals to protect biodiversity under climate change

JEI BE JE

Contributed Paper

Benefits of integrating complementarity into priority threat management

Iadine Chadés,*† Sam Nicol,*† Stephen van Leeuwen,‡ Belinda Walters,* Jennifer Firn,*§ Andrew Reeson,** Tara G. Martin,*† and Josie Carwardine*†

Priority Threat Management – questions it can answer

- Which salmon species will be lost without management?
- What strategies are needed to save all species and how much will it cost?
- Which strategies are most cost-effective (save most species per \$ spent)?
- How many species can be saved for a given budget?
- Which species are unable to be saved, irrespective of management?

Step 1. Clarify the Decision Context

What is the spatial scope?

Who are the key stakeholders and decision makers?

What is the time-frame?

What species of concern?

What are the key threats?

Threats to Mat-Su Basin Salmon

- Aquatic Invasive Species
- Climate Change
- Development in Estuaries and Nearshore Habitats
- Ground & Surface Water Withdrawals
- Household On-site Septic Systems & Wastewater
- Large-scale Resource Development
- Motorized Off-road Recreation
- Residential, Commercial, & Industrial Development
- Roads & Railroads
- Stormwater Runoff

The Strategic Action Plan of the Mat-Su Basin Salmon Habitat Partnership 2013 Update

Step 2. Develop clear objectives and performance measures

Over the next 20 years,

Meet escapement goals for pink, chum, chinook, coho and sockeye

Performance measure = probability of achieving above goals

Step 3. Define alternative strategies

Alternative Strategies

- 1. Overarching Science Strategies
- 2. Alteration of Riparian Areas
- 3. Climate Change
- 4. Culverts that Block Fish Passage
- 5. Filling of Wetlands
- 6. Impervious Surfaces & Stormwater Pollution
- 7. Aquatic Invasive Species
- 8. Large-scale Resource Development
- 9. Loss or Alteration of Water Flow or Volume
- 10. Loss of Estuaries & Nearshore Habitats
- 11. Motorized Off-road Recreation
- 12. Wastewater Management

Step 4. Estimate the consequences (costs, benefits, feasibility of strategies)

The cost-effectiveness (CE) of strategy i

$$CE_i = \frac{B_i \times F_i}{C_i}$$

 B_i = sum of improved persistence for all species under strategy i F_i = feasibility of strategy i C_i = total cost of strategy i

Step 4. Estimate benefit

$$B_i = p_i - p_0$$

Estimating benefits

Best guess and bounds for worst-case and best-case scenarios + a level of confidence that the real outcome will be between these bounds

Should be at least > 50%, but < 100% sure that the real outcome will be between your bounds.

Estimating Cost

Strategy: Culverts that block fish passage

Action: Develop and Implement Fish Passage Restoration

						Annual or
			Cost/	Total		Alternate
Costs of:	Unit	Extent	Yr	No. Yrs	Start Yr	Yrs
Materials, fuel,		4 per yr				
transport and	Fuel and	across				
equipment	materials	Basin	\$141,000	20	1	1
Labour and/or number	0.25FTE					
of FTEs, even if these	FishBio					
people are already	0.25		\$20,000			
employed	Contract.		\$30,000	20	1	1
Accommodation, travel	\$1500 *2					
etc	months		\$3,000	20	1	1
	0.1FTE					
Monitoring	FishBio		\$6000	20	2	2

Estimate Feasibility (uptake and likelihood of success)

- % uptake is the proportion of situations where the action will be accepted by the decision maker, assuming funds are available
 - e.g. 80% of jurisdictions will be amenable to removing barriers
- Likelihood of success is the proportion of times that the action will achieve its stated goals assuming it is implemented
 - e.g. how often will replacing culvert improve fish passage for salmon?

Step 5. Prioritize Strategies

Alteration of Riparian Areas

Estimate Benefits

Benefits

Alteration of RiparianAreas 575

566

Estimate Feasibility

Estimate Cost

	Benefits * Feasibility / Cost
1 Stormwater Poll.	es 605 * 0.61 / \$2M =
Alteration of Rip	arian
Areas	575 * 0.71 / \$5.8M =
2 Fish Passage	
	566 * 0.80 / \$0.5M =
🕥 斗 Motorized Off Ro	bad
• Recreation	441 * 0.51 / \$0.5M =
Aquatic Invasive	
J CT species	354 * 0.50 / \$1.5M =

Calculate cost-effectiveness

		Benefits	* Feasib	ility /	Cost	= * 10 -5
	Impervious Surfaces Stormwater Poll.	605 *	0.61 /	\$2M	=	184
	Alteration of Ripar	ian				
	Areas	575 *	0.71 /	\$5.8M	=	70
3	Fish Passage					
		566 *	0.80 /	\$0.5M	=	905
	Motorized Off Roa	d				
4 0%	Recreation	441 *	0.51 /	\$0.5M	=	449
	Aquatic Invasive					
() TT	species	354 *	0.50 /	\$1.5M	=	118

		Benefits	* Feasib	ility /	Cost	= * 10 -5
3	Impervious Surfaces Stormwater Poll.	605 *	0.61 /	\$2M	=	184
5	Alteration of Ripar	ian				
	Areas	575 *	0.71 /	\$5.8M	=	70
	Fish Passage					
		566 *	0.80 /	\$0.5M	=	905
	Motorized Off Roa	d				
2 0.2	Recreation	441 *	0.51 /	\$0.5M	=	449
	Aquatic Invasive					
4 75	species	354 *	0.50 /	\$1.5M	=	118

Why this approach could work for Salmon conservation in the Mat-Su

- •Making best use of limited resources
- •Using best knowledge available of the day
- •Clear about what can and cannot be achieved with a given budget
- •Not trying to put a \$ value on nature

Why this approach could work for Salmon conservation in the Mat-Su

- •Ability to leverage additional funding
- •Clear with funders on Return on Investment
- Uncovering critical uncertainties
- Ability to test state of knowledge

www.taramartin.org

MARINE ENVIRONMENTAL OBSERVATION PREDICTION & RESPONSE NETWORK

Ministry of Forests, Lands & Natural **Resource** Operations

ARC

ceed

Environment Canada

Environnement Canada

Australian Government

Australian Research Council

National Environmental Research Program

NERP Environmental Decisions Hub

Centre of Excellence for Environmental Decision

The Nature Conservancy

Strategy	Benefit	
	(B)	
1. Overarching Science Strategies	90	
2. Alteration of Riparian Areas	85	
3. Climate Change	50	
4. Culverts that Block Fish Passage	90	
5. Filling of Wetlands	79	
6. Impervious Surfaces & Storm Poll.	68	
7. Aquatic Invasive Species	56	
8. Large-scale Resource Development	20	
9. Loss or Alteration of Water Flow/Vol	78	
10. Loss of Estuaries & Nearshore Hab	75	
11. Motorized Off-road Recreation	60	
12. Wastewater Management	50	

Strategy	Benefit (B)	Cost (C) (NPV 10 Yr)
1. Overarching Science Strategies	90	\$1,286,318
2. Alteration of Riparian Areas	85	\$965,790
3. Climate Change	50	\$760,601
4. Culverts that Block Fish Passage	90	\$1,418,346
5. Filling of Wetlands	79	\$951,419
6. Impervious Surfaces & Storm Poll.	68	\$612,604
7. Aquatic Invasive Species	56	\$729,056
8. Large-scale Resource Development	20	\$38,994
9. Loss or Alteration of Water Flow/Vol	78	\$405,145
10. Loss of Estuaries & Nearshore Hab	75	\$873,411
11. Motorized Off-road Recreation	60	\$81,084
12. Wastewater Management	50	\$112,810

Strategy	Benefit (B)	Cost (C) (NPV 10 Yr)	Feas. (F)
1. Overarching Science Strategies	90	\$1,286,318	0.57
2. Alteration of Riparian Areas	85	\$965,790	0.66
3. Climate Change	50	\$760,601	0.62
4. Culverts that Block Fish Passage	90	\$1,418,346	0.67
5. Filling of Wetlands	79	\$951,419	0.67
6. Impervious Surfaces & Storm Poll.	68	\$612,604	0.71
7. Aquatic Invasive Species	56	\$729,056	0.56
8. Large-scale Resource Development	20	\$38,994	0.81
9. Loss or Alteration of Water Flow/Vol	78	\$405,145	0.59
10. Loss of Estuaries & Nearshore Hab	75	\$873,411	0.60
11. Motorized Off-road Recreation	60	\$81,084	0.53
12. Wastewater Management	50	\$112,810	0.62

Strategy	Benefit (B)	Cost (C) (NPV 10 Yr)	Feas. (F)	CE (B*F/C)
1. Overarching Science Strategies	90	\$ 1,286,318	0.57	3.99
2. Alteration of Riparian Areas	85	\$965,790	0.66	5.81
3. Climate Change	50	\$760,601	0.62	4.08
4. Culverts that Block Fish Passage	90	\$1,418,346	0.67	4.25
5. Filling of Wetlands	79	\$951,419	0.67	5.56
6. Impervious Surfaces & Storm Poll.	68	\$612,604	0.71	7.88
7. Aquatic Invasive Species	56	\$729 <i>,</i> 056	0.56	4.30
8. Large-scale Resource Development	20	\$38,994	0.81	41.54
9. Loss or Alteration of Water Flow/Vol	78	\$405,145	0.59	11.36
10. Loss of Estuaries & Nearshore Hab	75	\$873,411	0.60	5.15
11. Motorized Off-road Recreation	60	\$81,084	0.53	39.22
12. Wastewater Management	50	\$112,810	0.62	27.48

Strategy	Benefit (B)	Cost (C) (NPV 10 Yr)	Feas. (F)	CE (B*F/C)	Priority
1. Overarching Science Strategies	90	\$1,286,318	0.57	3.99	1
2. Alteration of Riparian Areas	85	\$965,790	0.66	5.81	7
3. Climate Change	50	\$760,601	0.62	4.08	2
4. Culverts that Block Fish Passage	90	\$1,418,346	0.67	4.25	3
5. Filling of Wetlands	79	\$951,419	0.67	5.56	6
6. Impervious Surfaces & Storm Poll.	68	\$612,604	0.71	7.88	8
7. Aquatic Invasive Species	56	\$729,056	0.56	4.30	4
8. Large-scale Resource Development	20	\$38,994	0.81	41.54	12
9. Loss or Alteration of Water Flow/Vol	78	\$405,145	0.59	11.36	9
10. Loss of Estuaries & Nearshore Hab	75	\$873,411	0.60	5.15	5
11. Motorized Off-road Recreation	60	\$81,084	0.53	39.22	11
12. Wastewater Management	50	\$112,810	0.62	27.48	10