Juvenile Chinook and Coho Salmon Winter Habitats in the Susitna River
Overwintering juvenile Chinook and coho salmon

- Juvenile salmon migrate to overwintering habitats due to:
 - changes in light,
 - decreasing fall flows,
 - winter freshets, and

- In glacial rivers:
 - Juvenile Chinook and coho salmon overwinter in off-channel habitats of the glacial Taku River (Murphy et al. 1984).
 - Juvenile Chinook have been documented overwintering in non-natal tributaries of the Yukon River.
What is known about overwintering juvenile salmon

- Juvenile salmon generally select overwintering habitats with low water velocity, cover, and relatively warmer water from springs or upwelling groundwater (Giannico and Hinch 2003, Hillman et al. 1987, Cunjak 1996).

- Chinook
 - Lower water velocities up to <20 cm/s
 - Preference for cobble/boulder substrate
 - Preference for cover provided by woody debris (Hillman et al. 1987, Bjornn 1971).

- Coho salmon
 - Slow water (<15 cm/s) off-channel habitats fed by groundwater (Giannico and Hinch 2003),
 - Beaver ponds (Bustard and Narver 1975)
 - Cover provided by woody debris (Petersen 1982, Swales et al. 1986).
Research Questions

• Test for significant small-scale localized \((m^2)\) correlations between juvenile coho and Chinook salmon and habitat characteristics and determine if those relationships can be used to characterize overwintering habitat at higher spatial scales: sampling sites (~1,000 \(m^2\)) and macrohabitat classes.
Glacial River Macrohabitats

- Tributary Mouth
- Sloughs
- Side Channel
- Main Channel
Glacial River Macrohabitats (March 29)

- Tributary Mouth
- Sloughs
- Side Channel
- Main Channel
Results Coho: Small Scale (~m²)

- Significant relationship with water velocity ($p < 0.001$, $N = 1123$).
Results Coho: Small Scale ($\sim m^2$)

- No significant relationship with water depth.
Results Coho: Small Scale (~m2)

- Significant difference in coho CPUT between cobble gravel, and silt substrates.
Results Coho: Small Scale (~m²)

- No significant difference in coho CPUT between sampling locations with cover (LWD, shrubs, macrophytes) and no cover (includes ice cover).
- Better relationship with velocity when large wood absent.
Results Coho: Small Scale ($\sim m^2$)

- Significant relationship with water temperature ($p < 0.001$, $N = 1123$).

![Graph showing the relationship between water temperature and coho salmon CPUT](image-url)
If overwintering juvenile salmon prefer warmer, low velocity, deep water habitats with cover; then, do sites or macrohabitats with these characteristics have a greater abundance of overwintering juvenile salmon.
<table>
<thead>
<tr>
<th>Chinook/coho CPUT</th>
<th>0.0/0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth (cm)</td>
<td>37</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>1.37</td>
</tr>
<tr>
<td>Cover</td>
<td>8/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>6.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chinook/coho CPUT</th>
<th>4.1/1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth (cm)</td>
<td>35</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>2.07</td>
</tr>
<tr>
<td>Cover</td>
<td>3/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>1.22</td>
</tr>
<tr>
<td>Chinook/coho CPUT</td>
<td>0.0/0.5</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Water Depth (cm)</td>
<td>39</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>2.57</td>
</tr>
<tr>
<td>Cover</td>
<td>2/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chinook/coho CPUT</th>
<th>0.0/12.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth (cm)</td>
<td>33</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>0.27</td>
</tr>
<tr>
<td>Cover</td>
<td>5/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>0.00</td>
</tr>
<tr>
<td>Chinook/coho CPUT</td>
<td>0.0/0.5</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Water Depth (cm)</td>
<td>39</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>2.57</td>
</tr>
<tr>
<td>Cover</td>
<td>2/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chinook/coho CPUT</th>
<th>3.0/1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Depth (cm)</td>
<td>35</td>
</tr>
<tr>
<td>Substrate</td>
<td>Silt/Cob</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>3.03</td>
</tr>
<tr>
<td>Cover</td>
<td>9/10</td>
</tr>
<tr>
<td>Velocity (cm/s)</td>
<td>3.60</td>
</tr>
</tbody>
</table>
Short-term adverse conditions
Change in CPUT (Jan – Oct)
Summary

- Low water velocity, cover, substrate, and temperature were important habitat characteristics for overwintering juvenile salmon.
- Site habitat characteristics could not be used to estimate coho salmon winter habitat as adverse conditions during ice formation may displace salmon or inhibit habitat selection.
- Mainstem ice formation, channel location and stage height can have a large influence on velocity and depth in off-channel habitats.
References

- Bell, E. 2001. Survival, growth and movement of juvenile coho salmon over-wintering in alcoves, backwaters, and main channel pools in Prairie Creek, California.
References (cont)

- Fausch, K.D. 1993. Experimental analysis of microhabitat selection by juvenile steelhead (Oncorhynchus mykiss) and coho salmon (O. kisutch) in a British Columbia stream. Canadian Journal of Fisheries and Aquatic Sciences. 50: 1198-1207.
- Johnston, NT; Irvine, JR; Perrin, CJ. 1993. Experimental analysis of microhabitat selection by juvenile steelhead (Oncorhynchus kisutch) utilization of tributary lakes and streams in the Kechikan River drainage, British Columbia. ISSN: 0706-6473.
• Murphy, ML; Koski, KV; Lorenz, JM; Thedinga, JF. 1997. Downstream migrations of juvenile Pacific salmon (Oncorhynchus spp.) in a glacial transboundary river. Canadian Journal of Fisheries and Aquatic Sciences 54(12): 2837-2846.

• Riehie, M. D. and J. S. Griffith. 1993. Changes in habitat use and feeding chronology of juvenile rainbow trout (Oncorhynchus mykiss) in fall and the onset of winter in Silver Creek, Idaho. Canadian Journal of Fisheries and Aquatic Sciences 50(10): 2119-2128.

